Variational multiscale stabilized FEM formulations for transport equations: stochastic advection-diffusion and incompressible stochastic Navier-Stokes equations

نویسندگان

  • Velamur asokan Badri narayanan
  • Nicholas Zabaras
چکیده

An extension of the deterministic variational multiscale (VMS) approach with algebraic subgrid scale (SGS) modeling is considered for developing stabilized finite element formulations for the stochastic advection and the incompressible stochastic Navier-Stokes equations. The stabilized formulations are numerically implemented using the spectral stochastic formulation of the finite element method (SSFEM). Generalized polynomial chaos and Karhunen-Loève expansion techniques are used for representation of uncertain quantities. The proposed stabilized method is then applied to various standard advection-diffusion and fluid-flow examples with uncertainty in essential boundary conditions. Comparisons are drawn between the numerical solutions and Monte Carlo/analytical solutions wherever possible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Variational Multiscale Stabilized Finite Element Method for Stochastic Advection-Diffusion and Stochastic Incompress- ible Flow

An extension of the deterministic variational multiscale (VMS) approach with algebraic subgrid scale (SGS) modeling is considered for developing stabilized finite element formulations for the linear stochastic scalar advection-diffusion equation and the incompressible stochastic Navier-Stokes equations. The stabilized formulations are numerically implemented using the spectral stochastic formul...

متن کامل

A multiscale/stabilized formulation of the incompressible Navier–Stokes equations for moving boundary flows and fluid–structure interaction

This paper presents a multiscale/stabilized finite element formulation for the incompressible Navier–Stokes equations written in an Arbitrary Lagrangian–Eulerian (ALE) frame to model flow problems that involve moving and deforming meshes. The new formulation is derived based on the variational multiscale method proposed by Hughes (Comput Methods Appl Mech Eng 127:387–401, 1995) and employed in ...

متن کامل

Variational Multiscale Stabilized Fem Formulations for Stochastic Advection-diffusion Equations

An extension of the deterministic variational multiscale approach with algebraic subgrid scale modeling is considered for developing stabilized finite element formulations for the stochastic advection-diffusion equations. The stabilized formulations are numerically implemented using the spectral stochastic formulation of the finite element method. Generalized Askey polynomial chaos and Karhunen...

متن کامل

10th International Workshop on Variational Multiscale and Stabilized Finite Elements (VMS2015)

for 10th International Workshop on Variational Multiscale and Stabilized Finite Elements (VMS2015) Some open problems of inf-sup stable FEM for incompressible flow problems G. Lube∗ Georg-August University Göttingen, Institute for Numerical and Applied Mathematics [email protected] In this talk, I will address some open problems occuring in the numerical approximation of incompressibl...

متن کامل

A Stochastic Representation for Backward Incompressible Navier-stokes Equations

By reversing the time variable we derive a stochastic representation for backward incompressible Navier-Stokes equations in terms of stochastic Lagrangian paths, which is similar to Constantin and Iyer’s forward formulations in [6]. Using this representation, a self-contained proof of local existence of solutions in Sobolev spaces are provided for incompressible Navier-Stokes equations in the w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004